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Abstract

On Feedback Stabilization of Time Varying Discrete Linear Systems

Results are given for stabilizing time varying discrete linear systems

by means of a feedback control stemming from a receding horizon concept

and a minimum quadratic cost with a fixed terminal constraint.

The results

parallel those recently obtained for continuous time systems [8] and extend

a well known method of Kleinman for stabilizing discrete fixed linear systems [7].
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I. Introduction
Consider a completely uniformly controllable and observable linear time |

varying discrete system ;

Xigp = & %5t Bi u, (1)
3 ° C; Xs (2)

where xieRn is the state vector, (oi,Bi,Ci) are given nxn, nxm and pxn time
varying matrices, and the state transition matrix o, is assumed to be non-
singular for all i. There are very few methods for constructing a stabiliz-

ing feedback control, u, = Lixi’ in the time varying case, the most familiar

k of which is the steady state optimal control for the quadratic cost
s
= : ' '
J = Llim .2. yiQiyi + “iRiui (3)
igre i=i

where Qi 2 0 and Ri > 0 [1-3]. Control laws based on a receding horizon no-

tion in minimizing control energy subject to a moving terminal constraint
have been developed by Thomas [4,5] in the case of time invariant systems.
These controls add new insight into a method for stabilizing a fixed linear |
system due to Kleinman [6,7]. Recently, a generalization of the control

law based on a receding horizon notion has been reported in [8]. In addition
to the extension to time varying systems, this generalization includes the

possibility of weighting the state vector through a nonnegative weighting

matrix Q(t) which is analogous to the Q, matrix in (3). The purpose of this- L

note is to indicate the parallel nature of these results for time varying White s“"’“‘a

Buff Section [ ‘
discrete systems and to point out the advantage in computing the gain matrix o |
for this control law in relation to the steady state control for (3).
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II. Main Result
We consider a feedback control law for the time varying system (1) - (2)

which can be interpreted as optimal for the '"receding horizon" quadratic cost

i+N-1
i kz. QY ¥ uRew ()
=i

subject to the moving terminal constraint

Xien C 0. (5)

When a non-null weighting matrix Qk is chosen in (4), we assume that it is
represented by Qk = D]'<Dk for appropriately chosen matrix Dk' The optimal

control for (4) - (5) can be determined using standard minimization techni-
ques with a Lagrange multiplier to handle (5). Assuming the fixed horizon

length N in (4) is chosen sufficiently long, the feedback form of this

control can be expressed in the following way
u, = -RIBIPTL(i41,14140)0, x : (6)
i (R 1 P i

where the inverse of the double indexed P-1 matrix is defined implicitly
through the solution to the discrete time Riccati type equation

1

-1 syav—1_g=1 PR DR
P(k,3) o P(k+l,3)¢k ¢ P(k+l,3)¢k Cka[I

+

-1 PR SRPTS | -1 -1
D, C P(k+l,3)¢k ckvk] Dy Cic % P(k+1,j)ok (7)

+

-1 "
B _1Re-1Bp-1° P(j,j) = o.

The nxn symmetric matrix P(i+l,i+1+N) is obtained by summing (7) backward
from k = i+1+N to k = i+l for any given j = i+l+N. Although the control
law (6) - (7) is obtained by summing a Riccati equation over a finite time

interval (in contrast with the infinite time summation interval required

s i e S s,
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for the minimum solution of the steady state quadratic cost (3)), it is
asserted here that this control renders the feedback system (1) asymptoti-
cally stable under appropriate controllability and observability conditions.

The following theorem is the discrete time analog of Theorem 2.1 in [8].

The integers tc and Zo in the statement of this theorem pertain to the
uniform bounds on the controllability and observability Gramians in that

complete uniform controllability of the pair (@i,Bi) implies the existence

of a fixed integer lc such that

)
(] . .
(s g ¢(1,k+l)BkBﬁ¢'(1,k+l) < GQI

i-1 ]
o(i,jd A 1 o 1
k=3 ,

for all i and for some positive scalars (al,a ). The integer £° is similarly

2

defined using the complete uniform observability of the pair (¢i,Ci).
Theorem (1) Assume that Ri and Qi satisfy 031 < Ri < auI and 0 ¢ Qi < asI

for positive scalars (aa,au,as) and for all i. Under the conditions that ]

the pair (@i,Bi) is uniformly completely controllable and Ci is bounded such

that ||c|]| s a, for all i, the system (1) - (2) with feedback control (5)
is uniformly asymptotically stable when the horizon length N is chosen to satisfy
£c+l ¢ N < @, (Note: Q; and Ci can be identically zero.)

(2) Suppose R, and Q satisfy asI < Ri s ol and asl < Qi < cGI for

positive scalars (a ,as) and for all i. Under the conditions that the

3%y %
pairs (¢i,Bi) and (¢i,Ci) are completely uniformly controllable and observable,
the system (1) - (2) with feedback control (6) is uniformly asymptotically

stable when the horizon length N is chosen to satisfy: 1 + max(lc,lo) €N gw,




Proof Outline: The proof parallels that given in [8] for continuous time

systems in that consideration is given to the adjoint system of (1) with

control (6), viz.

- > B el L I
Ripp = [¢i BiRi BiP (1+1,1+1+N)¢i] X.
(8)
A Fix,
together with the associated scalar valued function
Ry 4 , -1~
V(x,i) = x Qi P(1+l,1+l+N)¢i X. (9)

Similar to the approach in [8], the feedback system (1) and (6) will be asymp-
totically stable if and only if the adjoint system (8) is asymptotically un-
stable. The main difference between the continuous time proof in [8] and the
proof of the above Theorem is the judicious choice in Lyapunov function (9)
for the discrete time case. Using a detailed analysis w. ich can be found in
the complete report [9], it can be shown that V(x,i) in (9) is uniformly

bounded above and below by positive scalars (a ) such that a8||§|| € V(x,i)

8°%
< ag||§|| for all i. This involves establishing uniform lower and upper
bounds on the matrix P(i,i+N). Next, it can be shown that the difference
{V(ii+1’i+l) - V(ii,i)} is nondecreasing along solutions of (8) and, more

importantly, is uniformly bounded below in the sense that there exists a posi-

tive scalar @10 SO that

V(xg,qs141) = VG 510) 3 a | %; ||

o o

i+l?

for all i 3 i°+N, under the hypothesis of the theorem. This inequality hinges
on establishing the property of the matrix solution to (7) that P(k,jl)

< P(k,j2) for k < jl < j2, and the property ﬁ‘l(k,jl) 2 §-l(k,52) when




k <j, sj, for arelated matrix ﬁ-l(k,j)éy(k,j) which is defined implicitly

by the solution to
iR L s P "
K(k,j) ¢kK(k+1,J)¢k okK(k+1,J)Bk[Rk
- -1
1 1] 2 ]
+ BkK(k+1,J)Bk] BkK(k+1,])¢k + CkaCk

with the boundary condition K(j,j) = 0. As pointed out in [9], the matrix
K(k,j) is the same Ricatti gain matrix which appears in the solution to the
standard discrete regulator problem (without an end point constraint). This
fact leads to a relation between the control (6) and the standard regulator
control in that it is possible to establish the fol%owing inequalities
(details presented in [9]): 7
§°+N-l
xéK(io,i°+N)xo < kZi y;(Qkyk + u}'(Rkuk < xéﬁ_l(io,io+N)x°
o

where Uy is presumed specified by (6). This shows that the control (6) tends
to the same control as the steady state quadratic cost (3) when the horizon
length N.» =, since (6) is an asymptotically stable control and 5- (k,j) =
K(k,j). Thus in this sense the control (6) can be interpreted as an
approximation to the standard linear quadratic cost problem (3) which has the
property that its underlying Riccati equation is summed over a finite time

interval while still guaranteeing asymptotic stability.

III. Concluding Remarks

1. In the case of a time invariant system and constant weighting matrices,

i.e. (9,B,C,Q=D'D,R) all constant, the control (6) reduces to

u = -R'la'P‘l(N)oxi (10)

et i M i
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where P(N) can be obtained from

1 1

PCke1) = ¢ 2RO "L - " p()er” c'D'[1

+ pco~Ip(x)e terp 1 nce e (ke 7T

2k

+ BR B! s  PB(o) = 0. (11)

This control includes the results of [5] and [7] as special cases by choosing
Q=0, or C=0; viz, (11) can be summed in closed form as
N-1

P(N) = } P T
k=o

. (12)
which coincides with the gain matrices of [5] and [7]. 1In [10] it is shown
that the matrix ¢ in (12) can be singular for a controllable single input
system, while still facilitating a stabilizing feedback control law.

2. Other results which parallel the continuous time version in [8] are:
(i) The degree of relative stabilization of the control (6) can be guaranteed
in the sense that ||xil| + 0 as least as fast as (é&i as i + » for a chosen i

a > 1, provided the matrix & in (7) is replaced by ad, for all k. (ii) The

dual problem in filtering theory for the fixed terminal minimum energy prob-
lem, (4) - (5), is the standard linear filter which yields minimum error
covariance at time i with a completely unknown moving initial condition at
time (i-N). These results together with the rigorous proof of the Main Result
are contained in [9].

3. As in the continuous time version [8], the proof for the main result
has been rather indirect involving the adjoint system (8) and a suitable
Lyapunov function. However, a direct proof in the time invariant case can

be obtained (as in the time invariant case in [8]) using the Lyapunov function




V(x) = x'¢"1P(N)8' "Xx for the system x,

= ‘ll'l .
Gan ® [¢ - BR "B'P "(N)¢] s Perhaps

a more direct proof exists for the time varying case as well, though we have

not found one.
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